


ЭТИКЕТКА

$\frac{\text{СЛКН.431243.001 ЭТ}}{\text{Микросхема интегральная 564 ИК1B}}$

Функциональное назначение –

Строенный мажоритарно-мультиплексорный элемент

Климатическое исполнение УХЛ Схема расположения выводов

Условное графическое обозначение

X3	1	D1	> M		
X4	15	D2	≥ M	14	Y1
X5	2	D3			
X6	3	D4			
X7	13	D5	≥ M	12	Y2
X8	5	D6			
X9		D7	≥ M		
X10	6	D8	≥ IVI	10	Y3
X11	7	D9			
X1		A1			
X2	9	A2			

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода
1	Вход информации - Х3	9	Вход адреса - Х2
2	Вход информации - Х5	10	Выход информации - ҮЗ
3	Вход информации - Х6	11	Вход информации - X11
4	Вход информации - Х8	12	Выход информации - Ү2
5	Вход информации - Х9	13	Вход информации - Х7
6	Вход информации - Х10	14	Выход информации - Ү1
7	Вход адреса - Х1	15	Вход информации - Х4
8	Общий	16	Питание

1. ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ 1.1 Основные электрические параметры (при t = (25 ± 10) °C)

Таблица 1

	Буквенное	Норма	
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Выходное напряжение низкого уровня, B, при: U_{CC} = 5 B, 10 B	U_{OL}	-	0,01
2. Выходное напряжение высокого уровня, B, при: $U_{\rm CC} = 5~{\rm B}$ $U_{\rm CC} = 10~{\rm B}$	U _{OH}	4,99 9,99	
3. Максимальное выходное напряжение низкого уровня, B, при: $U_{\rm CC}$ = 5 B, $U_{\rm IL}$ = 1,5 B, $U_{\rm IH}$ = 3,5 B $U_{\rm CC}$ = 10 B, $U_{\rm IL}$ = 3,0 B, $U_{\rm IH}$ = 7,0 B	U _{OL max}	1 1	0,8 1,0
4. Минимальное выходное напряжение высокого уровня, B, при: U_{CC} = 5 B, U_{IL} = 1,5 B, U_{IH} = 3,5 B U_{CC} = 10 B, U_{IL} = 3,0 B, U_{IH} = 7,0 B	U _{OH min}	4,2 9,0	- -
5. Входной ток низкого уровня, мкА, при: $U_{CC} = 15~{\rm B}$	$I_{\rm IL}$	-	/-0,1/
6. Входной ток высокого уровня, мкА, при: $U_{CC} = 15 \; B$	I _{IH}	-	0,1

Продолжение таблицы 1			
1	2	3	4
7. Выходной ток низкого уровня, мА, при:			
$U_{CC} = 5 \text{ B}, U_0 = 0.4 \text{ B}$	I_{OL}	0,5	-
$U_{CC} = 10 \text{ B}, U_0 = 0.5 \text{ B}$		1,0	-
8. Выходной ток высокого уровня, мА, при:			
$U_{CC} = 5 \text{ B}, U_0 = 2,5 \text{ B}$	I_{OH}	/-1,0/	-
$U_{CC} = 10 \text{ B}, U_0 = 9.5 \text{ B}$		/-1,0/	-
9. Ток потребления, мкА, при:			
$U_{CC} = 5 B$	T	-	5,0
$U_{CC} = 10 B$	I_{CC}	-	10,0
$U_{CC} = 15 B$		-	20,0
10. Ток потребления в динамическом режиме, мА, при:			
$U_{CC} = 10 \text{ B}, C_L = 50 \Pi\Phi$	I_{OCC}	-	0,9
11. Время задержки распространения при включении (от входа к выходу),			
нС, при:			
$U_{CC} = 5 \text{ B}, C_L = 50 \text{ m}\Phi$	t_{PHL}	-	400
$U_{CC} = 10 \text{ B}, C_L = 50 \text{ m}\Phi$		-	150
12. Время задержки распространения при выключении (от входа к выходу),			
нС, при:	_		
$U_{CC} = 5 \text{ B}, C_L = 50 \text{ n}\Phi$	t_{PLH}	-	400
$U_{CC} = 10 \text{ B}, C_L = 50 \text{ m}\Phi$		-	150
13. Время задержки распространения при включении (от входа к выходу			
через мажоритарный элемент), нС, при:	4		
$U_{CC} = 5 \text{ B}, C_L = 50 \text{ m}\Phi$	$t_{ m PHL}$	-	500
$U_{CC} = 10 \text{ B}, C_L = 50 \text{ m}\Phi$		-	200
14. Время задержки распространения при выключении (от входа к выходу			
через мажоритарный элемент), нС, при:	+		
$U_{CC} = 5 \text{ B}, C_L = 50 \text{ m}\Phi$	t_{PLH}	-	500
$U_{CC} = 10 \text{ B}, C_L = 50 \text{ m}\Phi$		-	200
15. Время задержки распространения при включении (от входа адреса к			
выходу), нС, при:	t		
$U_{CC} = 5 \text{ B}, C_L = 50 \text{ m}\Phi$	$t_{ m PHL}$	-	500
$U_{CC} = 10 \text{ B}, C_L = 50 \text{ m}\Phi$		-	200
16. Время задержки распространения при выключении (от входа адреса к			
выходу), нС, при:	$t_{ m PLH}$		
$U_{CC} = 5 \text{ B}, C_L = 50 \text{ m}\Phi$	YLH	-	500
$U_{CC} = 10 \text{ B}, C_L = 50 \text{ п}\Phi$		-	200
17. Входная емкость, пФ, при:	C_{I}	_	12
$U_{CC} = 10 B$	CI	_	12

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

	золото	Ι	,
	серебро	I	,
в том числе:			
	золото	I	/MM
на 16 выводах,	длиной	M	IM.

Цветных металлов не содержится.

- 2 НАДЕЖНОСТЬ
- $2.1\,\mathrm{M}$ инимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В $11\,0398-2000\,$ и ТУ, при температуре окружающей среды (температуре эксплуатации) не более $65\,^{\circ}\mathrm{C}$ не менее $100000\,$ ч., а в облегченных режимах, которые приводят в ТУ при $\mathrm{U_{CC}} = 5\mathrm{B} \pm 10\%$ не менее $120000\,$ ч.

 Γ амма – процентный ресурс (T_{py}) микросхем устанавливают в ТУ при γ = 95% и приводят в разделе " Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (Т см) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных,- в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

- 2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.
- 3 ГАРАНТИИ ПРЕДПРИЯТИЯ ИЗГОТОВИТЕЛЯ
- 3.1 Гарантии предприятия изготовителя по ОСТ В 11 0398 2000:

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

4 СВЕДЕНИЯ О ПРИЕМКЕ

Микросхемы 564 ИК1В соответствуют техническим условиям бК0.347.064 ТУ 12/02 и признаны годными для эксплуатации.

TITLE CONTONIDI	co. milib coorderend,		reemin jemobii	OILO.S . / . OO . I S I I Z / OZ I
Приняты по		ОТ		
	(извещение, акт и др.)		(дата)	
Место для шт	гампа ОТК			Место для штампа ВП
Место для шт	ампа «Перепроверка	произ	введена	»
		-		(дата)
Приняты по		OT		
	(извещение, акт и др.)		(дата)	
Место для шт	гампа ОТК			Место для штампа ВП

Цена договорная

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка.

Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.